VALENCY DRIVEN PHASE TRANSITIONS

Phase and Valence Transitions in Ba2LnSnxNb1–xO6-∂
P J Saines, B J Kennedy, B Johannessen and S Poulton
J Solid State Chem 181, 2994-3004 (2008)

The structures of compounds in the perovskite series Ba2LnSnxNb1−xO6−δ (Ln=Pr and Tb and x=0, 0.1, 0.2, …, 1.0) have been examined using synchrotron X-ray and neutron diffraction. It was found that niobate members of both series feature full B-site cation ordering but that this order is lost with increasing x. X-ray absorption near-edge structure (XANES) and near-infrared spectroscopies indicate that the oxidation state of the lanthanide cations gradually changes from Ln3+ to Ln4+ with increased Sn4+ doping. This is believed to be the cause of the loss of B-site ordering. Least squares analysis of the XANES spectra suggests that the rate of the transformation of Ln3+ cations to the tetravalent state is such that the Pr series contains no oxygen vacancies while the Tb series may contain a very small amount of vacancies, with δ≈0.02.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s